

H2020 5Growth Project

Grant No. 856709

D3.3: First version of software

implementation for the platform

Abstract

The goal of this deliverable is to contain the documentation of the first release of software developed

within the 5Growth project for the integration of 5Growth platform with ICT-17 platforms and with

the infrastructure deployed for the project pilots (available in the project GIT repository). This code

has been developed based on the initial analysis and design reported in D3.2. Further design

decisions not included in D3.2 are summarized in this document as well.

D3.3: First version of software implementation for the platform 2

H2020-856709

Document properties

Document number D3.3

Document title First version of software implementation

Document responsible Diego San Cristobal (ERC)

Document editor Diego San Cristobal (ERC)

Editorial team Diego San Cristobal (ERC), Fabio Ubaldi (TEI), Giada Landi (NXW),

Juan Brenes (NXW), Aitor Zabala (TELCA), José Bonnet (ALB),

Carlos Marques (ALB), Miguel Mesquita (ALB), Carlos Guimaraes

(UC3M) Jorge Baranda (CTTC), Josep Mangues (CTTC), Engin

Zeydan (CTTC), Paolo Dini (CTTC), Ricardo Martínez (CTTC), Luca

Vettori (CTTC), Carlos Guimaraes (UC3M), Carlos J. Bernardos

(UC3M), Luigi Girletti (UC3M).

Target dissemination level PU

Status of the document Final

Version 1.0

Delivery date November 30, 2020

Actual delivery date November 30, 2020

Production properties

Reviewers Carlos Guimaraes (UC3M), Aitor Zabala (TELCA), Andres Garcia

Saavedra (NEC)

Disclaimer

This document has been produced in the context of the 5Growth Project. The research leading to

these results has received funding from the European Community's H2020 Programme under grant

agreement Nº H2020-856709.

All information in this document is provided “as is" and no guarantee or warranty is given that the

information is fit for any particular purpose. The user thereof uses the information at its sole risk and

liability.

For the avoidance of all doubts, the European Commission has no liability in respect of this document,

which is merely representing the authors’ view.

D3.3: First version of software implementation for the platform 3

H2020-856709

Contents
List of Figures ... 5

List of Tables ... 6

List of Acronyms.. 7

Executive Summary .. 8

1. Introduction ... 9

1.1. Initial context ... 9

1.1.1. 5Growth integration with 5G-EVE ... 9

1.1.2. 5Growth integration with 5G-VINNI ... 10

1.1.3. COMAU pilot ... 11

1.2. Structure of the document ... 11

2. Software artifacts ... 12

2.1. 5Gr-VS driver towards 5G-EVE ... 12

2.1.1. General description ... 12

2.1.2. Services and workflows ... 14

2.1.3. Implementation .. 18

2.2. 5G-EVE IWL driver ... 20

2.2.1. IWL catalogue ... 20

2.2.2. IWL Lifecycle Manager ... 24

2.3. 5Gr-VS driver towards 5G-VINNI ... 28

2.3.1. General description ... 28

2.3.2. Services and workflows ... 29

2.3.3. Implementation .. 32

2.4. SONATA adaptor ... 32

2.4.1. General description ... 32

2.4.2. Services and workflows ... 33

2.4.3. Implementation .. 36

2.5. Code developed for COMAU integration ... 38

2.5.1. General description ... 38

2.5.2. Services and workflows ... 40

2.5.3. Implementation .. 42

3. Considerations for Future Work ... 45

D3.3: First version of software implementation for the platform 4

H2020-856709

References ... 46

Annex 1: Descriptors mapping .. 48

SONATA descriptors - examples .. 48

NSD1.yaml .. 48

Gnb1.yml... 49

D3.3: First version of software implementation for the platform 5

H2020-856709

List of Figures

Figure 1: 5Growth integration with 5G-EVE.. 9

Figure 2: 5Growth integration with 5G-VINNI ... 10

Figure 3: Example of VSB for 5Gr-VS catalogue ... 13

Figure 4: Workflow for the design of a vertical service deployed in 5G-EVE platform 14

Figure 5: Workflow for the customization of a vertical service deployed in 5G-EVE platform 15

Figure 6: Workflow for the instantiation of a vertical service in 5G-EVE platform..................................... 17

Figure 7: Workflow for the termination of a vertical service in 5G-EVE platform 18

Figure 8: 5Gr-VS Software architecture .. 18

Figure 9: 5G-EVE IWL driver components location .. 20

Figure 10: Workflow for the onboarding of a NSD in 5G-EVE platform and a 5Growth site 22

Figure 11: Workflow for NSD Synchronization Between 5G-EVE platform and 5Growth site 22

Figure 12: Workflow for VNFD Synchronization Between 5G-EVE platform and 5Growth site 23

Figure 13: 5G-EVE IWL driver Workflows (Create, instantiate and terminate)... 25

Figure 14: 5G-EVE IWL driver Workflows (scale) ... 26

Figure 15: Example of VSB for 5Gr-VS Catalogue with SONATA NstIds ... 29

Figure 16: Operations supported by 5Gr-VS driver for SONATA ... 30

Figure 17: Flows for Id creation and instantiation of a SONATA service inside 5Gr-VS 31

Figure 18: Flows for termination of a SONATA service inside 5Gr-VS ... 31

Figure 19: 5Gr-VS Software architecture for SONATA integration .. 32

Figure 20: SONATA Adapter High-Level Architecture .. 33

Figure 21: High-Level Sequence Diagram ... 34

Figure 22: RAN Slice support in 5Growth stack .. 39

Figure 23: RAN Slice Network Service Architecture... 39

Figure 24: Vertical Service Allocation workflow in 5Growth stack ... 41

Figure 25: Vertical Service Termination workflow in 5Growth stack ... 42

D3.3: First version of software implementation for the platform 6

H2020-856709

List of Tables

Table 1: List of software components ... 12

Table 2: New 5Gr-SO NBI Endpoints ... 24

Table 3: 5G-EVE MSO-LO Driver Capabilities... 24

Table 4: 5G-EVE IWL driver Data model translation .. 26

Table 5: NBI of 5G-EVE IWL MSO-LO (ETSI SOL005) .. 27

Table 6: NBI of 5Growth 5Gr-SO (ETSI IFA013) ... 27

Table 7: 5G-EVE IWL driver resources ... 28

Table 8: NBI API ... 36

Table 9: Message Body Definition .. 37

Table 10: SONATA API supported by SBI .. 37

Table 11: REST API used by Radio Plugin .. 43

D3.3: First version of software implementation for the platform 7

H2020-856709

List of Acronyms

5Gr-RL – 5Growth Resource Layer

5Gr-SO – 5Growth Service Orchestrator

5Gr-VS – 5Growth Vertical Slicer

BBU – Baseband Unit

CSMF – Communication Service Management Function

ExpB – Experiment Blueprints

ExpD – Experiment Descriptor

HSS – Home Subscriber Server

IWL – Interworking Layer

MSO-LO – Multi-Site NSO to Local Orchestrator

NBI – North Bound Interface

NFs – Network Functions

NFVO – Network Functions Virtualization Orchestrator

NSDs – Network Service Descriptors

NST – Network Slice Template

RBAC – Role-Based Access Control

RU – Remote Unit

SBI – South Bound Interface

vEPC – virtual Evolved Packet Core

VS LCM – Vertical Service Lifecycle Manager

VSB – Vertical Service Blueprints

VSD – Vertical Service Descriptor

VSMF – Vertical Service Management Function

VNFDs – VNF Descriptors

D3.3: First version of software implementation for the platform 8

H2020-856709

Executive Summary

5Growth project targets the validation of vertical use cases based on innovative technologies such

as 5G infrastructure, virtualization and dynamic service orchestration, organized around INNOVALIA,

COMAU, EFACEC_S and EFACEC_E pilots. The 5Growth software stack contributes to that purpose

providing functionalities to orchestrate vertical services, among others. However, an experiment

validation framework is required as well, which is a feature provided by ICT-17 platforms. Therefore,

5Growth stack must work jointly with ICT-17 platforms to benefit from their experiment validation

facilities.

In the integration of 5Growth with 5G-EVE, needed for INNOVALIA pilot, the 5Gr-VS interacts with

5G-EVE Portal, requesting the deployment and instantiation of the whole vertical service. Then, it is

the 5G-EVE IWL which instructs where the network services are deployed, either under the 5G-EVE

domain or under the 5Growth domain (by interacting with the 5Gr-SO). Conversely, in the integration

of 5Growh with 5G-VINNI, needed for EFACEC_S and EFACEC_E pilots, the 5Gr-VS interacts with the

NSMF at 5G-VINNI. In this case, also the full service is requested by means of 5Gr-VS. The network

services deployment is done by the SONATA platform available at 5G-VINNI site, which also requires

an adaptor to translate the request received.

Furthermore, in the context of the pilots, adaptors may be needed to translate the standards used

by 5Growth to the ones used by the infrastructure deployed. For COMAU pilot, a translation is

needed to adapt the 5Growth stack network slicing functionalities to the standards used by the 5G

infrastructure.

The required software adaptors for integrating 5Growth with ICT-17 platforms and the project pilots

are listed in the introductory part of this deliverable. Later in the document, the first software release

of each adaptor is fully documented, covering the general description of the software architecture,

detailing the services offered, illustrating the workflow diagrams and explaining the implementation

in terms of methods, data models and other resources.

This first software release covers in general the most common lifecycle management operations.

Towards the final software release, further testing and debugging will be done in a fully integrated

environment and new functionalities will be developed in the areas of: (i) integration within the pilots;

(ii) support of required 5Growth WP2 innovations; and (iii) integrated monitoring support.

D3.3: First version of software implementation for the platform 9

H2020-856709

1. Introduction

This deliverable D3.3 First version of software implementation contains the documentation of the first

release of integration of 5Growth with ICT-17 platforms software components. It has been developed

under the scope of tasks T3.2 to T3.6. The deliverable includes a low-level description of the software

components and references to the repositories for the software components.

1.1. Initial context

This software is based on the analysis, architecture, and interface definitions exposed in D3.2 [1]. In

that previous deliverable, some different alternatives were being considered. In the following

subsections, a summary of the final design decisions is described.

1.1.1. 5Growth integration with 5G-EVE

For the integration of 5Growth with 5G-EVE, option 2 described in D3.2 Section 3.3 [1] has been

selected. The choice is motivated by the ability to fully exploit the inter-site capabilities offered by

the 5G-EVE platform for provisioning and monitoring services deployed across multiple sites, relying

on the default model defined in the 5G-EVE framework to interact with external platforms from ICT-

19 projects. It can be summarized as follows. The Communication Service Management Function

(CSMF) at 5Growth Vertical Slicer (5Gr-VS) interacts with the 5G-EVE Portal through a programmable

REST API to request the deployment and instantiation of the whole vertical service by the 5G-EVE

platform (i.e., vertical service request). When this request is received, the 5G-EVE platform, more

specifically, the 5G-EVE Interworking Layer (IWL), instructs what network services are deployed and

instantiated in the vertical premises’ resources, by interacting with the 5Growth Service Orchestrator

(5Gr-SO) in the vertical premises. This interaction is visually depicted in Figure 1.

FIGURE 1: 5GROWTH INTEGRATION WITH 5G-EVE

D3.3: First version of software implementation for the platform 10

H2020-856709

For further details, please refer to D3.2 Section 3.3 [1].

The required software components are the following:

• 5Gr-VS driver towards 5G-EVE, in 5Growth platform, see Section 2.1;

• 5G-EVE IWL catalogue driver, in 5G-EVE platform, see Section 2.2.1;

• 5G-EVE IWL Lifecycle Manager driver, in 5G-EVE platform, see Section 2.2.2.

1.1.2. 5Growth integration with 5G-VINNI

For the integration of 5Growth with 5G-VINNI, the CSMF at 5Gr-VS interacts with the Network Slice

Management Function (NSMF) at 5G-VINNI. In particular, the integration between 5Growth and 5G-

VINNI is done with the SONATA platform, a result of the 5GTANGO project, which is available at the

5G-VINNI Aveiro site. This integration comprises the adaptation of the 5Gr-VS requests to the

SONATA Slice Manager, which has been designed and implemented prior to the 3GPP technical

specification 28.531 [2].

The flow between 5Gr-VS and 5G-VINNI’s Network Function Virtualization Orchestrator (NFVO)

follows the lines shown in Figure 2.

FIGURE 2: 5GROWTH INTEGRATION WITH 5G-VINNI

For further details, please refer to D3.2 Section 3.4 [1].

The required software components are the following:

• 5Gr-VS driver towards 5G-VINNI, in 5Growth platform, see Section 2.3;

• SONATA adaptor, in 5G-VINNI platform, see Section 2.4.

D3.3: First version of software implementation for the platform 11

H2020-856709

1.1.3. COMAU pilot

COMAU pilot is using the network slicing feature offered by 5Growth platform. For that reason,

specific code was developed for this pilot in particular to adapt the format handled by 5Growth to

the format handled by the Radio Access Network (RAN) controller equipment used in the pilot. This

is further detailed in Section 2.5.

1.2. Structure of the document

Section 2 contains the documentation of the software artifacts. For each of the sections, there are

three subsections:

• general description: includes the overview and the architecture of the software;

• services and workflows: describes the services or operations and depicts the workflow

diagrams;

• implementation: lists the resources, methods and/or data models.

Section 3 covers a high-level summary of the improvements and functionalities envisioned for the

second release of software.

D3.3: First version of software implementation for the platform 12

H2020-856709

2. Software artifacts

This section contains the description of the software contained in this delivery. It includes the code

developed to integrate 5Growth with ICT-17 platforms and the code required by COMAU pilot to

use 5Growth Resource Layer (5Gr-RL) functionalities. The list of components is collected in Table 1:

TABLE 1: LIST OF SOFTWARE COMPONENTS

Name Section Repository

5Gr-VS driver

towards 5G-EVE

2.1 https://github.com/5growth/5gr-vs

5G-EVE IWL

catalogue driver

2.2.1 https://github.com/nextworks-it/5g-catalogue

Note: in “5Growth” branch

5G-EVE IWL Lifecycle

Manager driver

2.2.2 https://github.com/5growth/mso-lo

5Gr-VS driver

towards 5G-VINNI

2.3 https://5growth.eu/redmine/projects/5growth/repository/5gr-vs

SONATA adaptor 2.4 https://github.com/5growth/sonata-drivers

Code developed for

COMAU integration

2.5 https://5growth.eu/redmine/projects/5growth/repository/pilots/COMAU

2.1. 5Gr-VS driver towards 5G-EVE

2.1.1. General description

The interaction between the 5Gr-VS and the 5G-EVE platform exploits the 5Gr-VS multi-domain

functionalities at the CSMF level, where a vertical service can be decomposed into multiple “sub-

services” each of them deployed in a specific domain. Following this approach, the 5Gr-VS can

delegate the provisioning and management of the requested vertical services (or part of them) to

external domains. In the particular case of the interaction with 5G-EVE, the vertical service requested

at the North Bound Interface (NBI) of the 5Gr-VS is mapped into an equivalent concept at the 5G-

EVE level (i.e. a 5G-EVE experiment), which is then managed through the 5G-EVE portal.

As already discussed in Deliverable D3.2 [1], the automated interaction between the 5Gr-VS and the

5G-EVE portal covers the phases of the vertical service customization, provisioning, and runtime, up

to the termination. At the design phase, i.e., during the definition of the blueprints, the service

designer needs to define the service components that must be deployed in each domain and build

the Vertical Service Blueprints (VSB) and Experiment Blueprints (ExpB) accordingly. These blueprints

must be on-boarded in the 5G-EVE portal and in the 5Gr-VS catalogue, so that they will be available

as models to request a customized instantiation of a particular vertical service spanning across

5Growth and 5G-EVE domains.

An example of VSB for the 5Gr-VS catalogue is reported in Figure 3.

https://github.com/5growth/5gr-vs
https://github.com/nextworks-it/5g-catalogue
https://github.com/5growth/mso-lo
https://5growth.eu/redmine/projects/5growth/repository/5gr-vs
https://protect2.fireeye.com/v1/url?k=73a23a1a-2c39005f-73a27a81-867b36d1634c-a4b3b36afb397d1c&q=1&e=009a424e-857a-488d-8a06-784b5fa3b994&u=https%3A%2F%2Fgithub.com%2F5growth%2Fsonata-drivers
https://5growth.eu/redmine/projects/5growth/repository/pilots/COMAU

D3.3: First version of software implementation for the platform 13

H2020-856709

{
 "vsBlueprint": {
 "interSite": true,
 "version": "1.0",
 "name": "vs service name",
 "description": "end_to_end service",
 "parameters": [
 {
 "parameterId": "5GEVE_VSS.<experiment_param_id>",
 "parameterName": "experiment parameter name",
 "parameterType": "number",
 "parameterDescription": "description",
 "applicabilityField": "applicabilityField"
 }
...
],
 "configurableParameters": [
 "5GEVE_VSS.expd.kpi.<expb_kpiId>.lowerbound",
 "5GEVE_VSS.expd.kpi.<expb_kpiId>.upperbound",
 "5GEVE_VSS.exp.targetSites",
 "5GEVE_VSS.exp.experimentStopTime",
 "5GEVE_VSS.exp.useCase",
 "5GEVE_VSS.tc.tcBlueprintIds",
 "5GEVE_VSS.tc.<tcBlueprintId>.params.<param_id>"

],
 "atomicComponents": [
 {
 "type": "SERVICE",
 "componentId": "5GEVE_VSS",
 "compatibleSite": "5GEVE",
 "associatedVsbId": "<Experiment blueprint id>"
 }
]
 }
}

FIGURE 3: EXAMPLE OF VSB FOR 5GR-VS CATALOGUE

The vertical service is declared as an inter-site one and the list of its atomic components includes at

least one subservice (i.e. with type declared as “SERVICE”). In our case, the site where this subservice

needs to be deployed is “5GEVE” and the VSB associated with the subservice is defined in the

“associatedVsbId” field. It should be noted that, in the case of composite vertical services where all

the subservices are managed directly in the local domain controlled by the 5Gr-VS, this ID will

correspond to the ID of a VSB available in the 5Gr-VS catalogue. In our case, where the subservice is

controlled by the 5G-EVE platform, the ID corresponds to a blueprint available in the 5G-EVE Portal

catalogue, and in particular to an Experiment Blueprint (ExpB).

In terms of QoS parameters, defined in the “parameters” field and driving the translation between

vertical services and network slices/services of specific size, it should be noted that the parameters

associated with the composite service should map the ones of the subservices. This approach allows

determining the dimension of each subservice based on the custom parameters defined by the

customer when defining the Vertical Service Descriptor (VSD) of the composite service from the 5Gr-

VS GUI. In our case, we have a 1:1 mapping between the parameters of the composite VSB and the

ones of the 5G-EVE ExpB associated with the subservice (“experiment_param_id”). More complex

mappings may be investigated in the future.

D3.3: First version of software implementation for the platform 14

H2020-856709

Finally, in order to enable the full usage of all the 5G-EVE functionalities from the 5Growth platform,

we exploit the concept of the “configurableParameters” that in the 5Gr-VS are adopted to allow the

user to request a particular configuration of the vertical service. Declaring specific configurable

parameters in the VSB, the user can request the execution of particular test cases in the 5G-EVE

platform, configure each of them, set target thresholds for application and infrastructure KPIs, etc.

going beyond the original lifecycle management functionalities offered by the 5Growth platform

alone.

2.1.2. Services and workflows

The following figures provide a detailed view of the workflows between 5Gr-VS and 5G-EVE Portal

during the different phases of a vertical service lifecycle.

Figure 4 shows the design of the vertical service. Here the vertical interacts initially with the 5G-EVE

Portal GUI to onboard the blueprints of vertical service (VSB-A in this example), test cases (optional)

and experiment blueprint associated with the part of the service that needs to run in the 5G-EVE

platform. In a second step, the vertical onboards the blueprint of the composite service (VSB in this

example) into the 5Gr-VS catalogue, where it is stored. The composite VSB information model must

follow the format previously discussed (Figure 3).

FIGURE 4: WORKFLOW FOR THE DESIGN OF A VERTICAL SERVICE DEPLOYED IN 5G-EVE PLATFORM

Once the blueprints are onboarded in both 5G-EVE portal and 5Gr-VS catalogues, the vertical can

request the instantiation of the desired vertical service. As usual in the 5Growth platform, the first

step is to define the VSD describing the requirements of the service (see Figure 5). The composite

VSD must specify the values for all the parameters declared in the composite VSB, some of which, as

D3.3: First version of software implementation for the platform 15

H2020-856709

explained before, map the parameters of the subservice. Following this mapping, the 5Gr-VS

catalogue builds also the descriptor of the subservice (VSD-A in this example) and stores it in the

internal repository.

FIGURE 5: WORKFLOW FOR THE CUSTOMIZATION OF A VERTICAL SERVICE DEPLOYED IN 5G-EVE

PLATFORM

The instantiation phase, depicted in Figure 6, begins with the vertical service instantiation request

issued by the vertical to the 5Gr-VS. The request, as previously discussed, can include parameters

related to the execution of the experiment, encoded in the configuration parameters to be provided

by the vertical. Following the definition of the composite service available in the blueprint, the VS

Lifecycle Manager (VS LCM) identifies the need to interact with the external 5G-EVE domain to

delegate the instantiation of the subservice. Therefore, the VS LCM communicates with the

VsmfInteractionHandler requesting a service modeled according to the VSD “VSD-A”, to be

instantiated in the 5G-EVE domain and to be configured with the set of configuration parameters

provided by the vertical in the initial request. Based on the target domain, the VsmfInteractionHandler

forwards the request to the proper driver. At the 5G-EVE Vertical Service Management Function

(VSMF) driver, the parameters of the incoming request are translated into an Experiment Descriptor

(ExpD) including the VSD-A itself, which is then onboarded into the 5G-EVE Portal catalogue.

The onboard ExpD request is mapped into the corresponding HTTP request defined in the 5G-EVE

Portal OpenAPI1. As for all the HTTP messages exchanged with the 5G-EVE Portal, the request is

authorized using a token. The token is retrieved and periodically updated interacting with the 5G-

EVE Role-Based Access Control (RBAC) component. In the workflow represented in the picture this

interaction is omitted for simplicity, but it is required whenever the REST clients need to acquire a

new token or refresh an existing one.

1 https://github.com/5GEVE/OpenAPI/tree/master/Portal

https://github.com/5GEVE/OpenAPI/tree/master/Portal

D3.3: First version of software implementation for the platform 16

H2020-856709

After the ExpD onboarding step, the 5G-EVE VSMF Driver uses the ExpD identifier returned by the

5G-EVE Portal to request the scheduling of the experiment. By default, the experiment is scheduled

starting from the current time. However, the vertical can declare a different scheduling time using

the configuration parameters of the instantiation request. The 5G-EVE Portal returns the unique

identifier assigned to the experiment (called experiment_ID in the picture). This ID is in turn assigned

by the 5G-EVE VSMF Driver to the subservice instance (VS-A_ID) and returned back to the

VsmfInteractionHandler and, from here, to the VS LCM where it is stored in the record of the vertical

service instance.

After the scheduling, the 5G-EVE VSMF Driver follows automatically all the phases of the 5G-EVE

experiment, triggering the subsequent requests according to the evolution of the experiment status

which is retrieved through periodical polling messages. In particular, when the experiment moves to

the “READY” status, the 5G-EVE VSMF Driver requests its deployment in the environment prepared

by the 5G-EVE site manager(s). This command triggers the instantiation of all the Network Service(s)

associated to the vertical service in the 5G-EVE platform, with the proper deployment flavor selected

based on the ExpD parameters.

At the end of the experiment instantiation, signaled by the “INSTANTIATED” status, the 5G-EVE VSMF

Driver triggers the execution of the experiment. This request may include optional parameters related

to the selection and configuration of the test cases, if provided by the Vertical in the configuration

parameters. When the experiment moves in the “RUNNING_EXECUTION” status, the 5G-EVE VSMF

Driver notifies the VsmfInteractionHandler about the change in the status of the subservice, which is

reported as instantiated to the VS LCM component and updated accordingly in the vertical service

record. It should be noted that the execution of the experiment on the 5G-EVE platform also starts

the collection of the metrics and KPIs declared in the blueprint, which can be used to evaluate the

performance of the vertical service. These metrics and KPIs can be retrieved from the 5G-EVE Portal

GUI, visualizing their graphs or downloading the corresponding values in CSV files.

D3.3: First version of software implementation for the platform 17

H2020-856709

FIGURE 6: WORKFLOW FOR THE INSTANTIATION OF A VERTICAL SERVICE IN 5G-EVE PLATFORM

Figure 7 shows the termination phase, which is initiated by the vertical requesting the termination of

the composite vertical service from the 5Gr-VS NBI. The VS LCM identifies the subservice

corresponding to the composite service instance and invokes the VsmfInteractionHandler to

terminate it. The request is forwarded to the 5G-EVE VSMF Driver, which in turn sends the HTTP

request to the 5G-EVE Portal and starts the polling queries until the experiment status becomes

“TERMINATED”. The change of the status is reported back to the VsmfInteractionHandler and, from

here, to the VS LCM that updates the corresponding entry in the vertical service records.

D3.3: First version of software implementation for the platform 18

H2020-856709

FIGURE 7: WORKFLOW FOR THE TERMINATION OF A VERTICAL SERVICE IN 5G-EVE PLATFORM

2.1.3. Implementation

In terms of implementation, the interaction between the 5Gr-VS and the 5G-EVE platform is enabled

through a dedicated VSMF (Vertical Service Management Function) driver, the 5G-EVE VSMF Driver,

integrated with the 5Gr-VS software, as represented in Figure 8. In particular, the picture highlights

in yellow the components updated from the previous 5Gr-VS version and in green the new

components introduced to handle the interaction with 5G EVE Portal.

FIGURE 8: 5GR-VS SOFTWARE ARCHITECTURE

.

The 5G EVE VSMF driver has been already integrated in the 5Gr-VS and it is available in the 5Gr-VS

code2, in the it.nextworks.nfvmano.sebastian.vsfm.sbi.vsmf.drivers package. In detail, it is

2 https://github.com/5growth/5gr-vs

https://github.com/5growth/5gr-vs

D3.3: First version of software implementation for the platform 19

H2020-856709

implemented through the EveVsmfDriver class, extending the AbstractVsmfDriver abstract class,

which provides a generalized model for the communication with external domains providing VSMF

capabilities. The AbstractVsmfDriver class implements the VsLcmProviderInterface java interface,

which defines the methods of the internal NBI exposed by the 5Gr-VS CSMF component.

The 5Gr-VS instantiates a new EveVsmfDriver through the VsmfInteractionHandler (available in the

it.nextworks.nfvmano.sebastian.vsfm.sbi.vsmf package), which is the entity that manages all

the drivers to interact with external VSMF-like domains. The VsmfInteractionHandler offers a single

access point for the other internal modules of the 5Gr-VS (e.g. the Vertical Service Lifecycle Manager)

for requesting actions into external VSMF-like domain, wrapping their particular interfaces. The

configuration of these external domains is kept centralized in the Domain Catalogue component,

which is queried by the VsmfInteractionHandler at the bootstrap of the 5Gr-VS to determine the

drivers to be instantiated and their parameters (e.g. type, target URL, capabilities, etc.). The

VsmfInteractionHandler activates also a subscription with the 5Gr-VS Domain Catalogue, so that new

drivers can be dynamically instantiated whenever a new domain is added in the catalogue from the

5Gr-VS management interface.

Internally, the 5G-EVE VSMF Driver acts as REST client of the 5G-EVE Portal in order to perform the

following actions:

• Request the on-boarding of an experiment descriptor (ExpD) corresponding to the vertical

service to be deployed in the 5G-EVE platform;

• Request the instantiation of an experiment based on the given ExpD;

• Request the execution of the experiment, providing as optional parameters the details of the

test cases to be executed;

• Query the status and the information of the experiment;

• Request the termination of the experiment.

These actions are performed through REST clients that have been autogenerated from the OpenAPI

of the 5G-EVE Portal. The REST clients are available in the 5Gr-VS software repository under the

5GEVE_REST_CLIENT folder, together with their original OpenAPI specifications. In detail, the

following REST client are used:

• 5GEVE_RBAC_LOGIN_REST_CLIENT, used to interact with the Role Based Access Control

(RBAC) component of the 5G-EVE Portal for authentication and authorization issues. The

driver initially communicates with the 5G-EVE RBAC providing the credentials, in order to

retrieve a token that is used in all the following interactions.

• 5GEVE_PORTAL_CATALOGUE_REST_CLIENT, used to retrieve VSBs and ExpBs available in the

5G-EVE platform and to onboard the ExpD corresponding to the user’s vertical service request

on the 5Gr-VS NBI.

• 5GEVE_EXPERIMENT_LCM_REST_CLIENT, used to request lifecycle-related commands on the

experiment, i.e. instantiation, queries, execution, termination.

D3.3: First version of software implementation for the platform 20

H2020-856709

2.2. 5G-EVE IWL driver

The 5G-EVE Interworking Layer (IWL) 5Growth Service Orchestrator (5Gr-SO) driver is part of the

South Bound Interface (SBI) of 5G-EVE IWL component named the adaptation layer, this component

in charge of abstracting the on-boarding and lifecycle management capabilities from multiple NFV

Orchestrators (NFVOs). The adaptation layer driver exposes to 5G-EVE upper layers an ETSI SOL005

[3] REST interface, and the 5Gr-SO exposes an ETSI IFA013 [4] REST interface. Rising the necessity of

integration between these two interfaces, there should be a coherent translation between both

interfaces. The integration point between both domains is the 5G-EVE Multi-Site NSO to Local

Orchestrator (MSO-LO) REST API application, which will be the component in charge of translating

ETSI IFA013 and ETSI SOL005 data models. Figure 9 depicts where the 5G-EVE IWL driver component

is going to be located in the architecture.

FIGURE 9: 5G-EVE IWL DRIVER COMPONENTS LOCATION

2.2.1. IWL catalogue

2.2.1.1. General description

The 5G-EVE IWL catalogue is the functional element of the 5G-EVE platform responsible for the

management of Network Service Descriptors (NSD) and VNF packages and their synchronization

with the catalogues of the specific NFVOs deployed in each 5G-EVE site facility. The 5G-EVE IWL

catalogue exposes at its NBI a REST API compliant with the ETSI NFV SOL 005 interface, adopting the

TOSCA based data models for NSD and VNF packages, as defined in the ETSI NFV SOL 001 [5]

specification. These data models are based on the OASIS TOSCA Simple Profile in YAML and they are

used to store internally in the IWL catalogue all the NSDs and VNF packages available in the NFVOs

at the various 5G-EVE facilities using a unified, cross-site model. Since the NFVOs may adopt different

kinds of information models, the IWL catalogue needs to translate between the TOSCA-based model

used internally and the site-specific information models used in the target NFVOs (and vice versa).

D3.3: First version of software implementation for the platform 21

H2020-856709

This translation is performed through a number of NFVO drivers, e.g. the OSM and the ONAP drivers

already available in the 5G-EVE IWL catalogue. In the case of 5Growth sites, a new IWL catalogue

driver is required to perform the translation between the TOSCA-based models and ETSI NFV IFA

014 [6] and IFA 011 [7] information models adopted by the 5Gr-SO for Network Service Descriptors

(NSDs) and VNF Descriptors (VNFDs) respectively.

2.2.1.2. Services and workflows

The IWL catalogue driver developed in 5Growth supports the following functionalities:

• On-boarding of NSDs, received at the IWL catalogue by the 5G-EVE Portal in TOSCA

format, into the 5Gr-SO catalogue. This on-boarding is performed whenever an experiment

developer uploads a new service or context blueprint into the 5G-EVE Portal, together with

the corresponding NSD. While the blueprint is stored in the 5G-EVE Portal catalogue, the

NSD is forwarded to the IWL catalogue and from here to NFVO at the target site (see Figure

10). In this case, the IWL catalogue driver needs to perform a translation from the ETSI NFV

SOL 001 format into the ETSI NFV IFA 014 format.

• Retrieval of all the NSDs available at the 5Gr-SO catalogue. This action is performed at

the start-up of the IWL catalogue and it is repeated periodically during its operational time

in order to synchronize the list of NSDs with the remote 5Gr-SO catalogue and to update

the local repository accordingly (see Figure 11). The required information model translation

is from the ETSI NFV IFA 014 format into the ETSI NFV SOL 001 format.

• Retrieval of all the VNFDs available at the 5Gr-SO catalogue. This action is performed at

the start-up of the IWL catalogue and it is repeated periodically during its operational time

in order to synchronize the list of VNFDs with the remote 5Gr-SO catalogue (see Figure 12).

It should be noted that in the 5G-EVE model VNF packages can be onboarded only from

the site catalogues, since this procedure requires a manual verification of the VNF images

to be compliant with the site administration policies. For this reason, in the management of

VNF packages the NFVOs at each site act as “master”, while the IWL catalogue operates just

in read mode. Therefore, it needs to poll periodically the NFVOs to become aware of new

VNF packages made available in the remote sites. In this case, the IWL driver needs to

translate from the ETSI NFV IFA 011 format to the ETSI NFV SOL 001 format.

D3.3: First version of software implementation for the platform 22

H2020-856709

FIGURE 10: WORKFLOW FOR THE ONBOARDING OF A NSD IN 5G-EVE PLATFORM AND A 5GROWTH SITE

FIGURE 11: WORKFLOW FOR NSD SYNCHRONIZATION BETWEEN 5G-EVE PLATFORM AND 5GROWTH SITE

D3.3: First version of software implementation for the platform 23

H2020-856709

FIGURE 12: WORKFLOW FOR VNFD SYNCHRONIZATION BETWEEN 5G-EVE PLATFORM AND 5GROWTH SITE

It is worth to mention that only the first functionality is aligned with the mechanisms originally

supported in the interaction between the 5Gr-VS and the 5Gr-SO, where the 5Gr-VS acts as originator

of all the NSD/VNFD management actions. The support of the synchronization mechanism, based

on the retrieval of the entire list of NSDs and VNFDs available in the 5Gr-SO catalogue, has required

an extension in the functionalities and in the NBI REST API of the 5Gr-SO itself.

2.2.1.3. Implementation

The implementation of the IWL catalogue driver is based on the development of a dedicated plugin

developed as a Maven artifact and integrated into the IWL catalogue. The java classes are

implemented in the it.nextworks.nfvmano.catalogue.plugins.mano.fivegrowthCataloguePlugin

package. The plugin has been integrated in the 5G-EVE IWL Catalogue through a dependency in its

pom file and minor modifications in its core software to instantiate the plugin and interconnect it to

the rest of the system. The plugin is made available in the folder FivegrowthCataloguePlugin of the

public IWL catalogue repository3 in the 5Growth branch.

In terms of software structure, the plugin is implemented through the SOPlugin class. It extends the

MANOPlugin abstract class offered by the catalogue, which provides all the internal mechanisms to

3 https://github.com/nextworks-it/5g-catalogue Note: in “5Growth branch”

https://github.com/nextworks-it/5g-catalogue

D3.3: First version of software implementation for the platform 24

H2020-856709

interact with the core of the IWL catalogue through its internal Kafka bus. In detail, the

5GrowthCataloguePlugin implements the following methods:

• acceptNsdOnboardingNotification, used to onboard new NSD received from the IWL

catalogue core into the 5Gr-SO catalogue;

• getAllNsd, used to retrieve all the NSDs from the 5Gr-SO catalogue;

• getAllVnfd, used to retrieve all the VNFDs from the 5Gr-SO catalogue.

The plugin interacts with the 5Gr-SO catalogue through a REST client, implemented in the class

SODriver, while the translation between TOSCA and ETSI NFV IFA information models is handled in

the classes IfaToSolTranslator (from IFA to TOSCA) and SolToIfaTranslator (from TOSCA to IFA). The

new endpoints of the NBI REST are presented in the following table.

TABLE 2: NEW 5GR-SO NBI ENDPOINTS

Name Method Endpoint Description

Get NSDs GET /ns/nsd Returns associated information of all

NSDs onboarded in the 5Gr-SO.

Get VNFDs GET /ns/vnfd Returns associated information of all

VNFDs onboarded in the 5Gr-SO.

2.2.2. IWL Lifecycle Manager

2.2.2.1. General description

The main lifecycle management capabilities that are exposed by the MSO-LO driver are listed in

Table 3. These capabilities are necessary to manage the lifecycle of network services. Currently, this

interface abstracts some of the most common functionalities that most NFVO LCMs expose, such as

the creation of an NS from an NSD id, the instantiation, the scaling and the termination of an NS.

TABLE 3: 5G-EVE MSO-LO DRIVER CAPABILITIES

Capability Supported
Integration

Tests
Description

get_ns_list
NO N/A

Retrieves a list of network services from the

underlying NFVO.

create_ns
YES YES

Creates a network service identifier from the

underlying NFVO.

get_ns
YES YES

Retrieves a single network service by its id from the

underlying NFVO.

delete_ns
NO N/A

Deletes the network service by its id from the

underlying NFVO.

instantiate_ns
YES YES

Instantiates an already created network service in the

underlying NFVO.

terminate_ns
YES YES

Terminates an instantiated network service in the

underlying NFVO.

D3.3: First version of software implementation for the platform 25

H2020-856709

scale_ns
YES NO

Scales an instantiated network service in the

underlying NFVO.

get_op_list
NO N/A

Retrieves from the underlying NFVO a list of the

current operations.

get_op
YES YES

Retrieve an operation status from the underlying

NFVO by id.

Table 3, describes most of the capabilities exposed by the MSO-LO 5Gr-SO driver, if it is supported,

and if it has been tested against the 5Gr-SO. Some capabilities such as the get_ns_list, delete_ns are

supported by ETSI IFA013 but are not supported by the 5Gr-SO due to some limitations in its NBI.

Moreover, the capability get_op_list is not supported by ETSI IFA013 standard and consequently, the

5Gr-SO does not support this capability. Overall, the unsupported capabilities are not critical to

managing the lifecycle of the network services because they are mostly non-functional requirements.

Finally, the capability of scaling is supported by IFA013 and the 5Gr-SO, so it has been integrated

into the driver, however, this capability has not been tested.

2.2.2.2. Services and Workflows

Figure 13, represents the workflow to create a new network service (by assigning it a new identifier),

to instantiate it, and to verify using the operation identifier if the network service operation has been

completed. Additionally, Figure 13 also represents the workflow to terminate an already instantiated

network service. Figure 14, represents the workflow of scaling a previously instantiated network

service. Notice that the adaptation layer and the 5Gr-SO do not notify the 5G-EVE IWL and the MSO-

LO respectively. When an operation has been completed, it is the 5G-EVE IWL the component in

charge of polling the adaptation layer and retrieving the operation status.

FIGURE 13: 5G-EVE IWL DRIVER WORKFLOWS (CREATE, INSTANTIATE AND TERMINATE)

D3.3: First version of software implementation for the platform 26

H2020-856709

FIGURE 14: 5G-EVE IWL DRIVER WORKFLOWS (SCALE)

Network Service Lifecycle high-level workflows and data model mapping between ETSI SOL005 and

ETSI IFA013 can be found in Table 4, which shows a detailed description of the process and data

model translation for each type of action.

TABLE 4: 5G-EVE IWL DRIVER DATA MODEL TRANSLATION

Operation Workflow and Data Model Translation

Create 5G-EVE IWL creates using an ETSI SOL005 CreateNsRequest a new network service

from an already onboarded NSD, the adaptation layer translates such request into

an IFA013 CreateNsIdentifierRequest, its response CreateNsIdentifierResponse will be

mapped to ETSI SOL005 NsInstance data model.

Instantiate 5G-EVE IWL instantiates using ETSI SOL005 InstantiateNsRequest the network

service, the adaptation layer translates such request into IFA013

InstantiateNsRequest, its response InstantiateNsResponse will be mapped to ETSI

SOL005 response which has to include an HTTP Location header containing the

identifier of the Lifecycle operation (operation id).

Status

Polling

With the operation id, the 5G-EVE IWL will poll the adaptation layer, the adaptation

layer will translate ETSI SOL005 poll request into an IFA013

GetOperationStatusRequest which its response GetOperationStatusResponse will be

mapped to ETSI SOL005 NsLcmOpOcc. The 5G-EVE IWL will stop polling the

adaptation layer once an end state (COMPLETED or FAILED) is reached.

Terminate With a network service instantiated, the 5G-EVE IWL can terminate it by using an

ETSI SOL005 TerminateNsRequest, the adaptation layer will then translate such

request into an IFA013 TerminateNsRequest, its response TerminateNsResponse will

be mapped to ETSI SOL005 response which has to include an HTTP Location header

containing the identifier of the Lifecycle operation (operation id).

Scale In case the network service wants to be scaled, the 5G-EVE IWL can scale it by using

an ETSI SOL005 ScaleNsRequest, the adaptation layer will translate such request

into ETSI IFA013 ScaleNsRequest, its response ScaleNsResponse will be mapped to

D3.3: First version of software implementation for the platform 27

H2020-856709

ETSI SOL005 response which has to include an HTTP Location header containing

the identifier of the Lifecycle operation (operation id).

2.2.2.3. Implementation

The implementation of the 5G-EVE IWL driver requires the API translation between two standard

interfaces, ETSI IFA013 and ETSI SOL005. The implemented driver is capable of translating requests

from the NBI of the 5G-EVE IWL MSO-LO which follows ETSI SOL005 (Table 5), to the NBI of the 5Gr-

SO which follows ETSI IFA013 (Table 6).

TABLE 5: NBI OF 5G-EVE IWL MSO-LO (ETSI SOL005)

Name Method Endpoint Description

Create NS Id POST /nfvo/{nfvoId}/ns_instances Creates a new NS instance Identifier.

Get NS GET /nfvo/{nfvoId}/ns_instances/

{nsInstanceId}

Returns the information of the

network service referenced by nsId.

Instantiate

NS

POST /nfvo/{nfvoId}/ns_instances/

{nsInstanceId}/instantiate

Instantiate the Network Service

identified by nsId.

Scale NS POST /nfvo/{nfvoId}/ns_instances/

{nsInstanceId}/scale

Scale the Network Service identified

by nsId.

Terminate

NS

POST /nfvo/{nfvoId}/ns_instances/

{nsInstanceId}/terminate

Terminated the Network Service

identified by nsId.

Get

Operation

Status

GET /nfvo/{nfvoId}/ns_lcm_op_occs/

{nsLcmOpOccId}

Returns the status of an operation

by its operation identifier.

TABLE 6: NBI OF 5GROWTH 5GR-SO (ETSI IFA013)

Name Method Endpoint Description

Create NS Id POST /ns Creates and returns a Network

Service Identifier.

Get NS GET /ns/{nsId} Returns the information of the

network service referenced by nsId.

Instantiate

NS

PUT /ns/{nsId}/instantiate Instantiate the Network Service

referenced by nsId.

Scale NS PUT /ns/{nsId}/scale Scales the Network Service

referenced by nsId.

Terminate

NS

PUT /ns/{nsId}/terminate Terminated the Network Service

identified by nsId.

Get

Operation

Status

GET /operation/{operationId} Returns the status of an operation

by its operation identifier.

D3.3: First version of software implementation for the platform 28

H2020-856709

The code developed for the 5G-EVE adaptation layer can be found on GitHub4 under the MSO-LO

official code repository. All changes to add the capability of managing the lifecycle of network

services in 5G-SO are located at the master branch, and included in the latest release of the

component. Additionally, the 5G-EVE MSO-LO has been deployed as a docker image at docker hub5.

Table 7, summarizes and maps the source code, the docker image and the interfaces documentation

to their corresponding remote locations.

TABLE 7: 5G-EVE IWL DRIVER RESOURCES

Resource Location

Source Code https://github.com/5growth/mso-lo

Latest Release https://github.com/5growth/mso-lo/releases/tag/v1.4.0

Docker Image https://hub.docker.com/r/5geve/mso-lo

Documentation https://github.com/5growth/mso-lo/blob/master/README.md

ETSI SOL 005

(NBI Specification)

https://www.etsi.org/deliver/etsi_gs/NFV-

SOL/001_099/005/02.06.01_60/gs_NFV-SOL005v020601p.pdf

ETSI IFA 013

(SBI Specification)

https://www.etsi.org/deliver/etsi_gs/NFV-

IFA/001_099/013/03.04.01_60/gs_NFV-IFA013v030401p.pdf

2.3. 5Gr-VS driver towards 5G-VINNI

2.3.1. General description

This driver allows the deployment of a slice of a complex network service on SONATA ordered by

5Gr-VS. For that, 5Gr-VS needs to fulfill a data model compliant with VS descriptors, in such a way

that they may be translatable into a SONATA data model compliant with SONATA descriptors. The

driver implements HTTP requests to manage the lifecycle of network services, to retrieve information

from the service, and to change their configuration. The driver implements the interface

NsmfLcmProviderInterface furnished by the 5Gr-VS suite. This interface defines which operations to

override by each driver, providing a common set of operations each time the 5Gr-VS needs to

interact with other external systems in order to deploy and manage slices of complex network

services.

The VS Blueprint shown in Figure 15 provides information related to high-level definitions needed

by the 5Gr-VS to manage the target service.

4 https://github.com/5growth/mso-lo
5 https://hub.docker.com/r/5geve/mso-lo

https://hub.docker.com/r/5geve/mso-lo
https://github.com/5growth/mso-lo
https://hub.docker.com/r/5geve/mso-lo

D3.3: First version of software implementation for the platform 29

H2020-856709

{
 "vsBlueprint": {

 "version": "1.1",

 "name": "test_sonata",

 "description": "test_sonata"

 },

 "nsts": [

 {

 "nstId": "end_to_end_slice",

 "nstName": "end_to_end_slice",

 "nstVersion": "0.2",

 "nstProvider": "ALB",

 "nsdId": "e2e_nsd",

 "nsdVersion": "0.1",

 "nsstIds": [

 "536fa477-119e-4fea-add5-05afc5b53e33"

]

 },

 {

 "nstId": "536fa477-119e-4fea-add5-05afc5b53e33",

 "nstName": "536fa477-119e-4fea-add5-05afc5b53e33",

 "nstVersion": "0.1",

 "nstProvider": "ALB",

 "nsstIds": []

 }

]

}

FIGURE 15: EXAMPLE OF VSB FOR 5GR-VS CATALOGUE WITH SONATA NSTIDS

2.3.2. Services and workflows

These operations mainly forward information relevant to the management of services in 5Gr-VS

format, as seen in Figure 16. It is expected that this information will be transformed inside the

SONATA adaptor to a format compliant for effective management of SONATA services before the

operations are performed.

D3.3: First version of software implementation for the platform 30

H2020-856709

FIGURE 16: OPERATIONS SUPPORTED BY 5GR-VS DRIVER FOR SONATA

The operations implemented on this driver are:

• createNetworkSliceIdentifier – operation to obtain a unique slice identifier to be used by the

VS representing the slice;

• instantiateNetworkSlice – operation used to deploy the network service slice on SONATA;

• modifyNetworkSlice – operation to modify the topology of the network service slice on

SONATA;

• terminateNetworkSliceInstance – operation to un-deploy the service slice on SONATA;

• queryNetworkSliceInstance – operation to obtain selected data about the running slice

network service on SONATA.

As we can see in the following Figure 17, we have depicted a vertical service instantiation workflow.

It includes the initial request to obtain a valid identifier to the external system, in this case, SONATA,

linked to the internal designation identifier. After successfully obtaining the identifier, this will be

used to effectively initiate the desired network service or obtain a failure. The definitive prognosis

will be attained by polling the external system, obtaining a code representing the final state of the

service initiation.

D3.3: First version of software implementation for the platform 31

H2020-856709

FIGURE 17: FLOWS FOR ID CREATION AND INSTANTIATION OF A SONATA SERVICE INSIDE 5GR-VS

The termination workflow follows the same logic, the identifier obtained in the initiation process is

used to identify the service to terminate. The termination is achieved once again by polling the final

status on the external system. This is illustrated in Figure 18.

FIGURE 18: FLOWS FOR TERMINATION OF A SONATA SERVICE INSIDE 5GR-VS

D3.3: First version of software implementation for the platform 32

H2020-856709

2.3.3. Implementation

The implementation of the SONATA driver relies on the structure built inside the 5Gr-VS, namely the

NSMF Interaction Handler. This handler has the responsibility to adapt drivers for external systems

within the 5Gr-VS. It forwards information depicted on the descriptors related to the external system,

which must be adapted in its destination to achieve the desired objectives. This is illustrated in Figure

19.

FIGURE 19: 5GR-VS SOFTWARE ARCHITECTURE FOR SONATA INTEGRATION

The data model used by the driver uses the descriptors defined within the 5Gr-VS suite:

• the VS Blueprint – high-level descriptor;

• the VSD descriptors – descriptor related with the slice;

• the VS vnfd descriptors – descriptor related with each virtual network function;

• the VS nsd descriptors – descriptor related to the network service;

• the VS pnfd descriptors – descriptors related to each physical deployment unit.

Although there is not a direct mapping between these descriptors and those belonging to SONATA,

it is possible to achieve a transformation from one set to the other by following the similar functions

each parameter has in each set of descriptors. Most of the time, the VS parameters within the set of

descriptors will have no direct mapping on the SONATA descriptors, as can be seen in Annex 1:

Descriptors mapping. The code resides on a git repository6 inside the NSMF_DRIVERS\5growthSonata

folder.

2.4. SONATA adaptor

2.4.1. General description

The purpose of this component is to make the connection between the Vertical Slicer in 5Growth

Platform (5Gr-VS) and SONATA Platform.

This component has the following requirements:

6 https://5growth.eu/redmine/projects/5growth/repository/5gr-vs

https://5growth.eu/redmine/projects/5growth/repository/5gr-vs

D3.3: First version of software implementation for the platform 33

H2020-856709

• To handle messages in format TS 28.531 [2] with Vertical Slicer;

• To handle messages with SONATA in the specific SONATA API format;

• To translate the format of the messages from/to TS 28.531 and SONATA API;

• To support the messages type: Instantiate, Terminate and Query Slice Instantiations;

This component was implemented in python language and the code can be found in github7.

Figure 20 shows the high-level architecture.

FIGURE 20: SONATA ADAPTER HIGH-LEVEL ARCHITECTURE

This architecture is mainly composed of three principal software blocks: the NBI (North bound API),

the Translator and the SBI (South Bound API). The NBI is responsible to exchange REST messages

with the 5Gr-VS in the format TS 28.531 and provide/receive them to/from the Translator. The

Translator is responsible to change the format of the messages between format TS 28.531 and

SONATA API, receive these messages from NBI and provide them to SBI (and vice versa). Finally, the

SBI is responsible to exchange REST messages with SONATA API and provide/receive them to/from

the Translator.

2.4.2. Services and workflows

Figure 21: High-Level Sequence DiagramFigure 21 shows the flow diagram of the Instantiation and

Termination process.

7 https://github.com/5growth/sonata-drivers

https://protect2.fireeye.com/v1/url?k=73a23a1a-2c39005f-73a27a81-867b36d1634c-a4b3b36afb397d1c&q=1&e=009a424e-857a-488d-8a06-784b5fa3b994&u=https%3A%2F%2Fgithub.com%2F5growth%2Fsonata-drivers

D3.3: First version of software implementation for the platform 34

H2020-856709

FIGURE 21: HIGH-LEVEL SEQUENCE DIAGRAM

D3.3: First version of software implementation for the platform 35

H2020-856709

The sequence for instantiation and termination process can be detailed as follows:

1. The Vertical User accesses the Vertical Slicer GUI and gives the instruction to instantiate a

specific Network Slice Template (NST);

2. The 5Gr-VS knows that this NstId is for SONATA Platform and forwards the instruction to the

VS SONATA Driver;

3. The VS SONATA Driver starts the process of instantiation by sending the message to create

a Network Slice Instantiation Identifier (NsiId) to the SONATA Adapter;

4. The SONATA Adapter replies with the NsiId to the VS SONATA Driver;

5. The VS SONATA Driver sends the message to instantiate the Network Slice providing the

NsiId and NstId;

6. The SONATA Adaptor translates the message and sends that to SONATA NFVO to instantiate

the slice;

7. The SONATA NFVO replies that the instantiation has started;

8. The SONATA Adapter forwards that the instantiation has started to the VS SONATA Driver;

9. The VS SONATA Driver starts a loop to get the status of NSI until it is completed. For that,

the VS SONATA Driver, periodically polls the status of NsiId to SONATA Adapter;

10. The SONATA Adapter forwards the request to the SONATA NFVO;

11. The SONATA NFVO replies with the status of NsiId and some installation information;

12. The SONATA Adapter translates the message and replies to the VS SONATA Driver;

13. The VS SONATA Driver, when receives the status for the finalized instantiation, replies to 5Gr-

VS with the information needed;

14. The 5Gr-VS GUI sends the information to Vertical User that the instantiation was finalized.

15. The Vertical User accesses the Vertical Slicer GUI and instructs the termination of a specific

NsiId;

16. The 5Gr-VS knows that this NsiId is for SONATA Platform and forwards the instruction to the

VS SONATA Driver;

17. The VS SONATA Driver starts the process of termination by sending the message to terminate

a NsiId to the SONATA Adapter;

18. The SONATA Adaptor translates the message and sends it to the SONATA NFVO to terminate

the slice;

19. The SONATA NFVO replies that the termination has started;

20. The SONATA Adapter forwards that the termination has started to the VS SONATA Driver;

21. The VS SONATA Driver starts a loop to get the status of NSI until it is completed. For that,

the VS SONATA Driver periodically sends the message to request the status of NsiId to

SONATA Adapter;

22. The SONATA Adapter forwards the request to SONATA NFVO;

23. The SONATA NFVO replies with the status of NsiId and some slice information;

24. The SONATA Adapter translates the message and replies to VS SONATA Driver;

25. The VS SONATA Driver, when receives the status for the finalized termination, replies to VS

with the information needed;

26. The 5Gr-VS GUI sends the information to Vertical User that the termination was finalized.

D3.3: First version of software implementation for the platform 36

H2020-856709

2.4.3. Implementation

In this version, the SONATA packages (descriptors) are previously onboarded in the SONATA

platform, and the VS Blueprint (VSB) has the NST Id of the SONATA platform. The translator changes

the messages between format TS 28.531, described in Table 9, and SONATA API format, described

inside Table 10.

The API of the NBI has the following HTTP Methods, gathered in Table 8.

TABLE 8: NBI API

Action
HTTP

Method
Endpoint Body

Output

Status

Output

Body

Create a

Network Slice

Identifier

POST
http://<sonata-ip>:<sonata-adapter-

port>/api/v1/ns

<CreateNsiI

dRequest> 201 "nsiId"

Instantiate a

Network Slice
PUT

http://<sonata-ip>:<sonata-adapter-

port>/api/v1/ns/<nsiId>/action/insta

ntiate

<Instantiate

NsiRequest> 202 Null

Request the

information of

a Network

Slice

Instantiation

GET
http://<sonata-ip>:<sonata-adapter-

port>/api/v1/ns/<nsiId>

200

Network

SliceInst

ance

Request the

information of

all Network

Slice

Instantiations

GET
http://<sonata-ip>:<sonata-adapter-

port>/api/v1/ns

200

[Networ

kSliceIns

tance]

Terminate a

Network Slice

Instantiation

PUT

http://<sonata-ip>:<sonata-adapter-

port>/api/v1/ns/<nsiId>/action/termi

nate

<Terminate

NsiRequest> 202 Null

The body content that goes in the messages from Table 8 is described in Table 9.

D3.3: First version of software implementation for the platform 37

H2020-856709

TABLE 9: MESSAGE BODY DEFINITION

CreateNsiIdRequest

{

 "description": "string",

 "name": "string",

 "nstId": "string"

}

InstantiateNsiRequest

{

 "dfId": "string",

 "ilId": "string",

 "locationConstraints": {

 "altitude": 0,

 "latitude": 0,

 "longitude": 0,

 "range": 0

 },

 "nsSubnetIds": [

 "string"

],

 "nsiId": "string",

 "nstId": "string",

 "ranEndPointId": "string",

 "userData": {

 "additionalProp1": "string",

 "additionalProp2": "string",

 "additionalProp3": "string"

 }

}

NetworkSliceInstance

{

 "name": "string",

 "description": "string",

 "nsiId": "string",

 "nstId": "string",

 "nsdId": "string",

 "nsdVersion": "string",

 "dfId": "string",

 "instantiationLevelId": "string",

 "nfvNsId": "string",

 "soManaged": "bool",

 "networkSliceSubnetInstances":

"list<string>",

 "tenantId": "string",

 "status": "string",

 "errorMessage": "string",

 "nfvNsUrl": "string"

}

TerminateNsiRequest

{

 "nsiId": "string"

}

The SONATA API has the below HTTP Methods supported by SBI.

TABLE 10: SONATA API SUPPORTED BY SBI

Action
HTTP

Method
Endpoint Body

Output

Status

Instantiate a

Network

Slice

POST

http://<sonata-

ip>:32002/api/v

3/requests

{

 "name":"<nsi-name>",

 "nst_id":"<uuid_of_existing_NST>",

 "request_type":"CREATE_SLICE"

}

201

Instantiate a

Network

Slice specifyi

ng the

subnet per

VIM

POST

http://<sonata-

ip>:32002/api/v

3/requests

{

 "name":"<nsi-name>",

 "nst_id":"<uuid_of_existing_NST>",

 "request_type":"CREATE_SLICE",

 "instantiation_params":"[

 {

 \"vim_id\":\"<uuid_of_existing_VIM>\",

 \"subnet_id\":\"<id_of_subnet1_from_NST>\"

201

D3.3: First version of software implementation for the platform 38

H2020-856709

 },

 {

 \"vim_id\":\"<uuid_of_existing_VIM>\",

 \"subnet_id\":\"<id_of_subnet2_from_NST>\"

 }]"

}

Request the

information

of all

Network

Slice

instantiation

s

GET

http://<sonata-

ip>:32002/api/v

3/requests

200

Request the

information

of a Network

Slice

Instantiation

GET

http://<sonata-

ip>:32002/api/v

3/requests/<nsi

_uuid>

200

Terminate a

Network

Slice

Instantiation

POST

http://<sonata-

ip>:32002/api/v

3/requests

{

 "instance_uuid":"<nsi_uuid>",

 "request_type":"TERMINATE_SLICE"

}

201

2.5. Code developed for COMAU integration

2.5.1. General description

The code developed for COMAU uses the Radio Access Network (RAN) slice feature developed in

5Growth stack (i.e. 5Gr-VS, 5Gr-SO and 5Gr-RL modules) and described in D2.2 [8]. Figure 22 (taken

from D2.2) reports the architecture of this feature highlighting in red the blocks that are involved.

D3.3: First version of software implementation for the platform 39

H2020-856709

FIGURE 22: RAN SLICE SUPPORT IN 5GROWTH STACK

 Two operations are done for COMAU integrations:

• Development of 5Gr-RL plugin that interacts with Ericsson RAN Controller used in the Pilot

• Design of Service Descriptors (i.e. NSD, VSD, VSB) for COMAU use cases

The 5Gr-RL plugin is used to map the 5Gr-RL command in Ericsson RAN controller specific command

to configure the Radio part in COMAU pilot. The NSD/VSD/VSB descriptions are defined according

to the 3GPP specifications TS28.530 for RAN slice support [9] whose architecture is shown in Figure

23.

FIGURE 23: RAN SLICE NETWORK SERVICE ARCHITECTURE

RAN

NFs

TN Mngt Sys

3GPP Mgnt System

Manage

RAN

TN

TN

COOR
Manage

CN

CN

NFs

CN

NFs
TNTN

RAN CN

TN
APP

Server
Users

RAN

NFs

D3.3: First version of software implementation for the platform 40

H2020-856709

2.5.2. Services and workflows

The supported operations are:

• lifecycle operation of the VNF instance (i.e. allocation, modification, termination API) of a

Vertical Service instance

• lifecycle operation of VNF virtual network (i.e. allocation, modification termination API) that

handles the VNF connectivity inside the radio domain (i.e. the connection of VNF up to the

Radio domain gateway) of a Vertical Service instance.

Figure 24 and Figure 25 show respectively the allocation and termination workflow for the VNF and

virtual networks of Vertical Service. The handled API is the same used to configure VNFs in a

datacenter VIM and follows the ETSI IFA005 [10] specification.

The sequence for the instantiation process can be detailed as follows:

1. Vertical requires the instantiation of a Vertical service instance to 5Gr-VS

2. 5Gr-VS stores it and map it to the Network Service Descriptor that gives the set of VNF and

VL to be allocated

3. 5Gr-VS requires the instantiation of an instance of NSD to 5Gr-SO

4. 5Gr-SO places the VNF and VL on NFVI-POP and Logical Link (LL) according to the abstract

view provided by 5Gr-RL

5. 5Gr-SO requests the allocation of the resources on NFVI-POP for VNF

6. 5Gr-SO requests the allocation of the resources on LL for VL

7. 5Gr-RL allocates the required resources and provides a reference to them

8. 5Gr-SO stores the references

9. 5Gr-SO sends an instantiation reply to 5Gr-VS

D3.3: First version of software implementation for the platform 41

H2020-856709

FIGURE 24: VERTICAL SERVICE ALLOCATION WORKFLOW IN 5GROWTH STACK

The sequence for the termination process can be detailed as follows:

1. Vertical requires the termination of an instantiated Vertical service to 5Gr-VS

2. 5Gr-VS sets the instance to “terminating”

3. 5Gr-VS requires the termination of the instantiated NS to 5Gr-SO

4. 5Gr-SO retrieves the resource references for the instantiated NS

5. 5Gr-SO requests the termination of the resources on NFVI-POP for VNF

6. 5Gr-SO requests the termination of the resources on LL for VL

7. 5Gr-RL terminates the required resources

8. 5Gr-RL notifies 5Gr-SO of the resource termination

9. 5Gr-SO removes the references

10. 5Gr-SO sends a termination reply to 5Gr-VS

D3.3: First version of software implementation for the platform 42

H2020-856709

FIGURE 25: VERTICAL SERVICE TERMINATION WORKFLOW IN 5GROWTH STACK

2.5.3. Implementation

As the 5Gr-RL plugin development follows the implementation time-plan of the RAN feature defined

in D2.2, the implementation is an ongoing process. The current plugin can handle functions

developed in the first release of the 5Growth platform like Radio VNF. Table 11 reports the API that

is managed by the Radio Plugin. As additional functions will be released later in the platform (like

the PNF and 3GPP MF support), the API for handling such functions will be described in a future

project deliverable.

The Network Service Descriptor (NSD) of the radio connection between the device (such as an arm,

robot, smartphone, tablet…) and the vertical application server is divided into RAN functions and

Core functions that are connected via a generic transport network. The NSDs for COMAU use cases

define two Network Functions (NFs) for RAN part and two for Core part. The RAN NFs are the Remote

Unit (RU) and Baseband Unit (BBU), while the core NFs are the virtual Evolved Packet Core (vEPC) and

the Home Subscriber Server (HSS), that is separated from vEPC. The VSB and VSD define the vertical

requirements (like maximum number of devices, scaling rules) with the addition of the parameters

D3.3: First version of software implementation for the platform 43

H2020-856709

to configure the 5Gr-VS slicer. Additional details of the NSD, VSD, and VSB can be found in the

project git repository8.

TABLE 11: REST API USED BY RADIO PLUGIN

Action
HTTP

Method
Endpoint

Output

Status

Request Radio

Coverage

Area

GET
curl -X GET http://<plugin-ip>:<plugin-port>/abstract-radio-

coveragearea
200

Request NFVI

POP

Information

GET
curl -X GET http://<plugin-ip>:<plugin-

port>/network_resources/nfvi-pop-network-information

Request NFVI

POP Compute

Capabilities

GET
curl -X GET http://<plugin-ip>:<plugin-

port>/compute_resources/information

Instantiate a

VNF
POST

curl -X POST http://<plugin-ip>:<plugin-

port>/compute_resources -d ' { "accelerationCapability": [

"string"], "computeId": "string", "computeName": "string",

"flavourId": "string","hostId": "string","operationalState":

"string","vcImageId": "string","virtualCpu": {"cpuArchitecture":

"string","cpuClock": 0,"numVirtualCpu": 0,

”virtualCpuOversubscriptionPolicy": "string",

“virtualCpuPinning": {"cpuMap": "string","cpuPinningPolicy":

"string","cpuPinningRules": "string" } },"virtualDisks": "string",

“virtualMemory": {"numaEnabled":

true,"virtualMemOversubscriptionPolicy":

"string","virtualMemSize": 0},"virtualNetworkInterface": [{

"accelerationCapability": "string","bandwidth":

"string","ipAddress": ["string"],"macAddress":

"string","metadata": [{"key": "string","value": "string"}],

"networkName": "string","networkId": "string","networkPortId":

"string","operationalState": "string","ownerId":

"string","resourceId": "string","typeConfiguration":

201

8 https://5growth.eu/redmine/projects/5growth/repository/pilots/COMAU

https://5growth.eu/redmine/projects/5growth/repository/pilots/COMAU

D3.3: First version of software implementation for the platform 44

H2020-856709

"string","typeVirtualNic": "string"}],"zoneId": "string"}' -vvv -H

'content-type:application/json'

Terminate a

VNF
DELETE

curl -X POST http://<plugin-ip>:<plugin-

port>/compute_resources/{computeId}
201

Instantiate a

VN
POST

curl -X POST http://<plugin-ip>:<plugin-

port>//network_resources -d

'{"affinityOrAntiAffinityConstraints":

"string","locationConstraints": "string","metadata": [{"key":

"string","value": "string"}],"networkResourceName":

"string","networkResourceType": "string","reservationId":

"string","resourceGroupId": "string","typeNetworkData":

"string","typeNetworkPortData": "string","typeSubnetData":

{"resourceId": "string","networkId": "string","ipVersion":

"string","gatewayIp": "string",”cidr": "string","isDhcpEnabled":

true,"addressPool": [0],"metadata": [{"key": "string","value":

"string"}]}}' -vvv -H 'content-type:application/json'

201

Terminate a

VN
DELETE

curl -X POST http://<plugin-ip>:<plugin-

port>/compute_resources/{networkId}
201

D3.3: First version of software implementation for the platform 45

H2020-856709

3. Considerations for Future Work

This first code release of the platform software provides the initial implementation of the software

components required for the integration of 5Growth and the ICT-17 platforms 5G-EVE and 5G-VINNI

/ SONATA. It aims to provide the baseline implementation that will allow the vertical pilots to start

testing the deployment of the use cases across different platforms. As such, the implementation

focus was on the support of the most common service lifecycle management operations, like

creation, instantiation, status, termination, and scale. The implemented software components have

been initially validated in integration tests against mock-ups / dummy components of each ICT-17

platform.

For future perspectives, two lines of work are going to be followed in a parallel approach:

1. Full workflow integration tests with the real ICT-17 platforms: upon the successful

connection between 5Growth and ICT-17 platform sites, the required environment to test the

full interaction workflows will become available. However, as individual integrations were

already tested and validated, we envision these future tests to go seamless.

2. Development and improvements on both interactions with the ICT-17 platforms are

going to be considered according to: (i) integration within the pilots; (ii) support of required

WP2 5Growth innovations; and (iii) integrated monitoring support. However, the feasibility of

novel developments and improvements on the interactions will require an initial assessment

since, it not only depends on the needs of the 5Growth vertical pilots, but also on existing

support by the ICT-17 platforms.

The aforementioned lines of work will allow us to identify potential issues that will need further

debugging as well as improvements in the code to face a wide range of conditions. Overall, all the

proposed tasks are going to contribute to a more complete, mature and robust code (to be released

with future D3.5) which can be leveraged to support many other vertical industries and their use

cases.

D3.3: First version of software implementation for the platform 46

H2020-856709

References

[1] 5Growth, “D3.2, "Specification of ICT-17 in-house deployment",” [Online]. Available:

https://5growth.eu/wp-content/uploads/2020/04/D3.2-Specification_of_ICT17_in-

house_deployment.pdf.

[2] 3GPP, “3GPP TS 28.531, "5G; Management and orchestration; Provisioning",” [Online]. Available:

https://www.etsi.org/deliver/etsi_ts/128500_128599/128531/15.00.00_60/ts_128531v150000p.pdf.

[3] ETSI, “ETSI GS NFV-SOL 005, "Network Functions Virtualisation (NFV) Release 2; Protocols and

Data Models; RESTful protocols specification for the Os-Ma-nfvo Reference Point",” [Online].

Available: https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/005/02.07.01_60/gs_NFV-

SOL005v020701p.pdf.

[4] ETSI, “ETSI GS NFV-IFA 013, "Network Functions Virtualisation (NFV) Release 3; Management and

Orchestration; Os-Ma-nfvo reference point - Interface and Information Model Specification",”

[Online]. Available: https://www.etsi.org/deliver/etsi_gs/NFV-

IFA/001_099/013/03.04.01_60/gs_NFV-IFA013v030401p.pdf.

[5] ETSI, “ETSI GS NFV-SOL 001, "Network Functions Virtualisation (NFV) Release 3; Protocols and

Data Models; NFV descriptors based on TOSCA specification",” [Online]. Available:

https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/001/03.03.01_60/gs_NFV-

SOL001v030301p.pdf.

[6] ETSI, “ETSI GS NFV-IFA 014, "Network Functions Virtualisation (NFV); Management and

Orchestration; Network Service Templates Specification",” [Online]. Available:

https://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/014/02.01.01_60/gs_NFV-

IFA014v020101p.pdf.

[7] ETSI, “ETSI GS NFV-IFA 011, "Network Functions Virtualisation (NFV); Management and

Orchestration; VNF Packaging Specification",” [Online]. Available:

https://www.etsi.org/deliver/etsi_gs/nfv-ifa/001_099/011/02.01.01_60/gs_nfv-

ifa011v020101p.pdf.

[8] 5Growth, “D2.2, "Initial implementation of 5G End-to-End Service Platform",” [Online]. Available:

https://5growth.eu/wp-content/uploads/2020/05/D2.2-Initial_implementation_of_5G_End-to-

End_Service_Platform.pdf.

[9] 3GPP, “3GPP TS 28.530, "5G; Management and orchestration; Concepts, use cases and

requirements",” [Online]. Available:

https://www.etsi.org/deliver/etsi_ts/128500_128599/128530/15.00.00_60/ts_128530v150000p.pdf.

[10] ETSI, “ETSI GS NFV-IFA 005, "Network Functions Virtualisation (NFV) Release 3; Management and

Orchestration; Or-Vi reference point - Interface and Information Model Specification",” [Online].

D3.3: First version of software implementation for the platform 47

H2020-856709

Available: https://www.etsi.org/deliver/etsi_gs/nfv-ifa/001_099/005/03.01.01_60/gs_nfv-

ifa005v030101p.pdf.

[11] 5Growth, “ Pilots repository,” [Online]. Available:

https://5growth.eu/redmine/projects/5growth/repository/pilots .

D3.3: First version of software implementation for the platform 48

H2020-856709

Annex 1: Descriptors mapping

SONATA descriptors - examples

NSD1.yaml

descriptor_schema: "https://raw.githubusercontent.com/sonata-nfv/tng-

schema/master/service-descriptor/nsd-schema.yml"

vendor: "eu.5gvinni"

name: "ns-open5gcorer5-access"

version: "0.1"

author: "5GVINNI ALB Team"

description: "This is a service to deploy Open5gCore Release 5"

network_functions:

 - vnf_id: "vnf_open5gcorer5_upfe"

 vnf_vendor: "eu.5gvinni"

 vnf_name: "vnf-open5gcorer5-upfe"

 vnf_version: "0.1"

 - vnf_id: "vnf_open5gcorer5_ue"

 vnf_vendor: "eu.5gvinni"

 vnf_name: "vnf-open5gcorer5-ue"

 vnf_version: "0.1"

 - vnf_id: "vnf_open5gcorer5_gnb"

 vnf_vendor: "eu.5gvinni"

 vnf_name: "vnf-open5gcorer5-gnb"

 vnf_version: "0.1"

 - vnf_id: "vnf_open5gcorer5_mgmt"

 vnf_vendor: "eu.5gvinni"

 vnf_name: "vnf-open5gcorer5-mgmt"

 vnf_version: "0.1"

connection_points:

 - id: "mgmt"

 interface: "ipv4"

 type: "management"

 - id: "out1"

 interface: "ipv4"

 type: "external"

 - id: "out2"

 interface: "ipv4"

 type: "external"

 - id: "out3"

 interface: "ipv4"

 type: "external"

virtual_links:

 - id: "mgmt"

D3.3: First version of software implementation for the platform 49

H2020-856709

 connectivity_type: "E-LAN"

 connection_points_reference:

 - "vnf_open5gcorer5_ue:mgmt"

 - "vnf_open5gcorer5_gnb:mgmt"

 - "vnf_open5gcorer5_mgmt:mgmt"

 - "vnf_open5gcorer5_upfe:mgmt"

 - "mgmt"

 - id: "air"

 connectivity_type: "E-Line"

 connection_points_reference:

 - "vnf_open5gcorer5_gnb:inout1"

 - "vnf_open5gcorer5_ue:inout1"

 - id: "ngu1"

 connectivity_type: "E-Line"

 connection_points_reference:

 - "vnf_open5gcorer5_upfe:out1"

 - "out1"

 - id: "cpn4"

 connectivity_type: "E-LAN"

 connection_points_reference:

 - "vnf_open5gcorer5_gnb:out2"

 - "vnf_open5gcorer5_upfe:out2"

 - "out2"

 - id: "ngu"

 connectivity_type: "E-Line"

 connection_points_reference:

 - "vnf_open5gcorer5_gnb:inout2"

 - "vnf_open5gcorer5_upfe:inout1"

 - id: "upt12"

 connectivity_type: "E-Line"

 connection_points_reference:

 - "out3"

 - "vnf_open5gcorer5_upfe:out3"

service_specific_managers:

 - id: "tngssm5gservicetask-config-monitor"

 description: "An SSM functioning as task, config and monitor SSM."

 image: "mesquitasonata/5gservicer5-ssm-access-taskconfigmonitor"

 options:

 - key: "type"

 value: "task"

 - key: "type"

 value: "configure"

 - key: "type"

 value: "monitor"

Gnb1.yml

descriptor_schema: "https://raw.githubusercontent.com/sonata-nfv/tng-

schema/master/function-descriptor/vnfd-schema.yml"

vendor: "eu.5gvinni"

D3.3: First version of software implementation for the platform 50

H2020-856709

name: "vnf-open5gcorer5-gnb"

version: "0.1"

author: "5GVINNI ALB Team"

description: "This is a service to deploy Open5gCore Release 5, namelly its GNB

component"

virtual_deployment_units:

 - id: "gnb1"

 vm_image: "http://www.google.com"

 vm_image_format: "qcow2"

 vm_image_md5: a43594a34839b88c9b6630caf947ebfe

 resource_requirements:

 cpu:

 vcpus: 2

 memory:

 size: 2

 size_unit: "GB"

 storage:

 size: 10

 size_unit: "GB"

 connection_points:

 - id: "eth0"

 interface: "ipv4"

 type: "internal"

 - id: "eth1"

 interface: "ipv4"

 type: "internal"

 - id: "eth2"

 interface: "ipv4"

 type: "external"

 security_groups: []

 - id: "eth3"

 interface: "ipv4"

 type: "external"

 - id: "eth4"

 interface: "ipv4"

 type: "external"

 user_data: |

 password: ubuntu

 chpasswd: { expire: False }

 ssh_pwauth: True

 network: {config: disabled}

virtual_links:

 - id: "mgmt"

 connectivity_type: "E-LAN"

 connection_points_reference:

 - "gnb1:eth0"

 - "mgmt"

 dhcp: True

 - id: "ngc-2-out"

 connectivity_type: "E-LAN"

D3.3: First version of software implementation for the platform 51

H2020-856709

 connection_points_reference:

 - "gnb1:eth1"

 - "out1"

 dhcp: True

 - id: "air-2-air"

 connectivity_type: "E-LAN"

 connection_points_reference:

 - "inout1"

 - "gnb1:eth2"

 dhcp: True

 - id: "cpn4-2-out2"

 connectivity_type: "E-LAN"

 connection_points_reference:

 - "gnb1:eth3"

 - "out2"

 dhcp: True

 - id: "ngu-2-out3"

 connectivity_type: "E-LAN"

 connection_points_reference:

 - "gnb1:eth4"

 - "inout2"

 dhcp: True

connection_points:

 - id: "mgmt"

 interface: "ipv4"

 type: "management"

 - id: "out1"

 interface: "ipv4"

 type: "external"

 - id: "inout1"

 interface: "ipv4"

 type: "external"

 - id: "out2"

 interface: "ipv4"

 type: "external"

 - id: "inout2"

 interface: "ipv4"

 type: "external"

function_specific_managers:

 - id: "sonfsm5gservicegnbgnb-config"

 description: "FSM for the configuration of the GNB vnf"

 image: "mesquitasonata/5gservicer5-gnb-fsm-css"

 options:

 - key: "type"

 value: "start"

 - key: "type"

 value: "stop"

 - key: "type"

 value: "configure"

	List of Figures
	List of Tables
	List of Acronyms
	Executive Summary
	1. Introduction
	1.1. Initial context
	1.1.1. 5Growth integration with 5G-EVE
	1.1.2. 5Growth integration with 5G-VINNI
	1.1.3. COMAU pilot

	1.2. Structure of the document

	2. Software artifacts
	2.1. 5Gr-VS driver towards 5G-EVE
	2.1.1. General description
	2.1.2. Services and workflows
	2.1.3. Implementation

	2.2. 5G-EVE IWL driver
	2.2.1. IWL catalogue
	2.2.1.1. General description
	2.2.1.2. Services and workflows
	2.2.1.3. Implementation

	2.2.2. IWL Lifecycle Manager
	2.2.2.1. General description
	2.2.2.2. Services and Workflows
	2.2.2.3. Implementation

	2.3. 5Gr-VS driver towards 5G-VINNI
	2.3.1. General description
	2.3.2. Services and workflows
	2.3.3. Implementation

	2.4. SONATA adaptor
	2.4.1. General description
	2.4.2. Services and workflows
	2.4.3. Implementation

	2.5. Code developed for COMAU integration
	2.5.1. General description
	2.5.2. Services and workflows
	2.5.3. Implementation

	3. Considerations for Future Work
	References
	Annex 1: Descriptors mapping
	SONATA descriptors - examples
	NSD1.yaml
	Gnb1.yml

