D5.3: Demonstrations at EuCNC’20 or equivalent

Abstract

One of the dissemination goals of 5Growth is to conduct technology demonstrations in a high impact venue, such as EuCNC or similar venue. This document briefly explains the demonstration activities carried out during offline conferences and online events. Other information related to the demonstrations carried out by the project is also provided.
Document properties

<table>
<thead>
<tr>
<th>Document number</th>
<th>D5.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document title</td>
<td>Demonstrations at EuCNC’20 or equivalent</td>
</tr>
<tr>
<td>Document responsible</td>
<td>Oleksii Kolodiazhnyi (Mirantis)</td>
</tr>
<tr>
<td>Document editor</td>
<td>Oleksii Kolodiazhnyi (Mirantis)</td>
</tr>
<tr>
<td>Editorial team</td>
<td>Josep Mangues-Bafalluy (CTTC)</td>
</tr>
<tr>
<td>Target dissemination level</td>
<td>Public</td>
</tr>
<tr>
<td>Status of the document</td>
<td>Final</td>
</tr>
<tr>
<td>Version</td>
<td>1.0</td>
</tr>
<tr>
<td>Delivery date</td>
<td>June 30, 2020</td>
</tr>
<tr>
<td>Actual delivery date</td>
<td>June 30, 2020</td>
</tr>
</tbody>
</table>

Production properties

| Reviewers | Carlos J. Bernardos (UC3M) |

Disclaimer

This document has been produced in the context of the 5Growth Project. The research leading to these results has received funding from the European Community's H2020 Programme under grant agreement N° H2020-856709.

All information in this document is provided "as is" and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.

For the avoidance of all doubts, the European Commission has no liability in respect of this document, which is merely representing the author’s view.
Contents

List of Figures ... 4
1. Introduction .. 5
2. Demonstrations ... 6
 2.1. vrAln Proof-of-Concept — A Deep Learning Approach for Virtualized RAN Resource Control .. 6
 2.2. Remote Control of a Robot Rover Combining 5G, AI, and GPU Image Processing at the Edge .. 6
3. Conferences and online events ... 8
 3.1. ACM MobiCom 2019 ... 8
 3.1.1. Media content .. 8
 3.1.2. Demonstration details ... 9
 3.1.3. Recognition ... 9
 3.2. 5G end to end experimentation by verticals in EU projects .. 10
 3.2.1. Media content .. 10
 3.2.2. Demonstration details .. 10
 3.2.3. Recognition ... 11
 3.3. 5G PPP Technology Board Workshop 2020 ... 12
 3.3.1. Media content .. 12
 3.3.2. Demonstration details ... 13
 3.4. OFC’20 .. 13
 3.4.1. Media content .. 13
 3.4.2. Demonstration details ... 13
4. References .. 15
List of Figures

Figure 1: MobiCom19 poster .. 8
Figure 2: MobiCom19 presentation process ... 9
Figure 3: Receiving the best demo runner-up award .. 9
Figure 4: Presentation banner on “5G end to end experimentation by verticals in EU projects” workshop ... 10
Figure 5: Demonstration process in the “5G end to end experimentation by verticals in EU projects” workshop .. 11
Figure 6: Results of the attendee satisfaction poll of the “5G end to end experimentation by verticals in EU projects” workshop ... 11
Figure 7: The heading slide of our demonstration in the 5G PPP workshop .. 13
Figure 8: The DEMP rover used in the demonstration at OFC’20 ... 14
Figure 9: Setup used for the demonstration ... 14
1. Introduction

As part of the Communication, Dissemination, and Exploitation Plan (CoDEP) [1] of the project, one of its dissemination goals of 5GROWTH is to present technical demonstrations of project results in relevant events. They are used to showcase in a tangible way what is presented in the form of deliverables, papers, talks, etc. in other venues. This document briefly explains the demonstration activities carried out during four online events and/or conferences, namely:

During these events, two different demonstrations were shown:

- Remote Control of a Robot Rover Combining 5G, AI, and GPU Image Processing at the Edge.

Information on other demonstrations carried out by the project as well as a summary of communication, dissemination, and exploitation activities can be found in D5.2 [1].
2. Demonstrations

2.1. vrAln Proof-of-Concept — A Deep Learning Approach for Virtualized RAN Resource Control

While the application of the NFV paradigm into the network is proceeding full steam ahead, there is still one last milestone to be achieved in this context: the virtualization of the radio access network (vRAN). Due to the very complex dependency between the radio conditions and the computing resources needed to provide the baseband processing functionality, attaining an efficient resource control is particularly challenging. In this demonstration, it was showcased vrAln, a vRAN dynamic resource controller that employs deep reinforcement learning to perform resource assignment decisions. vrAln, which is implemented using an open-source LTE stack over a Linux platform, can achieve substantial savings in the used CPU resources while maintaining the target QoS for the attached terminals and maximize throughput when there is a deficit of computational capacity.

The goal of this demonstrator was to show the effectiveness of vrAln in achieving a lower resource usage footprint while maintaining adequate QoS level and maximize throughput upon a deficit of computational capacity. Also, vrAln attained this results in a model-free way. While this demonstrator uses only one specific hardware configuration, vrAln does not need to be specifically configured for a target NFV infrastructure. Specifically, the vrAln demonstrator builds on: (i) three laptops that play the roles of VRAPs host and UEs attached to those VRAPs, (ii) four Software-Defined Radio (SDR) boards that provide the radio front-ends, and, (iii) one display to let the audience interact with vrAln.

The performance of a virtual BS is a very complex function of the contexts and the resource assignment, motivating the use of Deep Learning. We solved the problem using a novel combination of Sparse Autoencoders, a Reinforcement Learning algorithm and a Neural Network Classifier. The demonstrated solution minimizes the costs with unlimited resources and maximizes the performance with limited resources. With respect to state-of-the-art solutions, vrAln achieves.

The demonstrated approach showed good results with models trained with real data and implemented a proof-of-concept of the solution:

- CPU savings: ~30% with unlimited resources.
- Throughput increase: ~25% per virtual Base Station.

2.2. Remote Control of a Robot Rover Combining 5G, AI, and GPU Image Processing at the Edge

The combination of 5G Ultra Reliable Low Latency Communications (URLLC), supported by a low latency optical fronthaul and backhaul, and of intelligence at the edge, supported by accelerated micro data-centers, is paving the way to the remote control of moving machineries (e.g., robots, robot rovers, cars). Such remote control would allow lowering the cost of moving machineries by offloading most of their intelligence to the network. Standard Development Organisations (SDOs)
are conducting several initiatives in this direction. One of the important working items of Release 16, expected to be released in ASN.1 in the second quarter of 2020, is the Enhancement of URLLC support in the 5G Core network. In parallel, to decrease the end-to-end latency further, Multi-Access Edge computing (MEC) or, more in general, edge technologies are being developed. Edge technologies can also benefit from the development of edge micro data-centers in which the traditional elaboration based on Central Processing Units (CPU) is complemented with elaboration offloaded to Graphical Processing Unit (GPU) or programmable hardware, such as Field programmable gate array (FPGA). Artificial Intelligence (AI) and Machine Learning (ML) algorithm can benefit from these accelerated data-centers for implementing part of the machinery remote control.

The proposed demonstration was organized as follows. A four-wheel drive robot rover was connected to an edge micro data-center where the rover remote control was deployed. A 5G network provided the connectivity between the rover and the data center. The rover remote control was based on an algorithm recognizing traffic signs. The algorithm resided in an edge node attached to the 5G Core Network (CN). The algorithm recognizing the signs is based on Artificial Intelligence. The algorithm was run on GPUs forming the edge micro data center. The rover sent the live scene acquired through a camera to the AI algorithm that recognized the traffic signs. The recognized sign (e.g., left turn or right turn) was sent to the rover remote control that sent the corresponding command (e.g., left turn or right turn) to the rover through the 5G network (i.e., optical backhaul, fronthaul and wireless channel).

Visitors to the demo experienced the capability of the 5G network, AI, and GPU based edge image recognition to identify the different traffic signs attached to the posts and to send command to the four wheel-drive robot rover to turn in the right direction. Visitors could challenge the rover performance by piloting the rover through a joystick.
3. Conferences and online events

3.1. ACM MobiCom 2019

MobiCom 2019 is the 25th Annual International Conference on Mobile Computing and Networking. The conference took place on Oct 21-25 in Los Cabos, Mexico. It is the twenty-fifth in a series of annual conferences sponsored by ACM SIGMOBILE dedicated to addressing the challenges in the areas of mobile computing and wireless and mobile networking. The MobiCom conference series serves as a highly selective, premier international forum addressing networks, systems, algorithms, and applications that support mobile computers and wireless networks. In addition to the regular conference program, MobiCom 2019 included a set of workshops, research demonstrations, and a poster session that included the ACM Student Research Competition.

3.1.1. Media content

The poster for the MobiCom conference is shown in the figure below.

![MobiCom 2019 Poster](image)

The presentation process is captured on the next photo.
3.1.2. Demonstration details

The concept of the demonstration is described in section 2.1.

3.1.3. Recognition

We were very happy to receive a best demo runner-up award, captured in the following photo.
3.2. 5G end to end experimentation by verticals in EU projects

5Growth led the organization of an online workshop on 5G end-to-end experimentation by verticals in EU projects, in which also 5G-DIVE, 5G-EVE, 5G-VINNI and 5G-Tours projects participated.

3.2.1. Media content

Information on the workshop is available at: http://5growth.eu/5g-end-to-end-experimentation-by-verticals-in-eu-projects/

The demonstration recording is available at: https://youtu.be/YMn5WMIaEV8?t=5520

The presentation banner is shown in Figure 4.

![Figure 4: Presentation banner on "5G end to end experimentation by verticals in EU projects" workshop](image)

3.2.2. Demonstration details

The concept of the demonstration is described in section 2.1.

The demonstration process has been captured in the screenshot shown in Figure 5.
3.2.3. Recognition

There were about 112 online participants to the workshop. The recording on the YouTube channel has been viewed 247 times as of the time of submission of this deliverable.

The survey circulated to attendees that followed the demonstration showed positive results in terms of attendee satisfaction with the program of the workshop, as shown in Figure 6.

![Diagram showing attendee satisfaction results]

FIGURE 6: RESULTS OF THE ATTENDEE SATISFACTION POLL OF THE “5G END TO END EXPERIMENTATION BY VERTICALS IN EU PROJECTS” WORKSHOP
3.3. 5G PPP Technology Board Workshop 2020

During the 26th and 27th of May of 2020, a two-day 5G PPP Technology Board Workshop took place. This workshop was organized as an online virtual event due to the COVID-19 pandemic. During these two days more than 70 people participated in seven different sessions.

The first day started with sessions on the collaboration among infrastructure and vertical validation trials in 5G PPP projects, on the three 5G PPP automotive projects, and on the Test, Measurement and KPIs Validation WG latest activities. The first day completed its activities discussing the latest status of three white papers, under preparation by the Technology Board, that analyze Edge Computing solutions, the impact of 5G to vertical industries and the use of 5G in indoor environments.

During the second day, several solutions related to the use of Artificial Intelligence and Machine Learning were presented followed by a discussion about their potential impact on 5G networks. The following session was dedicated to the methodology of capturing and analyzing the latest key achievements of 5G PPP Phase II and Phase III projects. Finally, the workshop concluded with a session related to business validation aspects.

As part of the Use of AI & ML in Networks – Part 1 session, 5Growth presented the demonstration on a Deep Learning Approach for vRAN Resource Orchestration.

3.3.1. Media content

Information on the workshop is available at: https://5g-ppp.eu/5g-ppp-technology-board-workshop-2020/

The recording of the demonstration is available at: https://5g-ppp.eu/wp-content/uploads/2020/06/AI-ML-session-1.mp4

The slides presented are available at: https://5g-ppp.eu/wp-content/uploads/2020/06/4.-AI_Network_Workshop_Andres.pdf

The heading slide of our demonstration is shown in the following screenshot (Figure 7) captured while the demonstration was presented in the workshop.
3.3.2. Demonstration details

The concept of the demonstration is described in Section 2.1.

3.4. OFC’20

OFC is the largest global conference and exhibition for optical communications and networking professionals. The program is comprehensive – from research to marketplace, from components to systems and networks and from technical sessions to the exhibition. OFC draws attendees from all corners of the globe to meet and greet, teach and learn, make connections and move the industry forward.

The conference took place in San Diego, CA, USA in March 2020.

3.4.1. Media content

Information on the conference is available at: https://www.ofcconference.org

The article is available at: https://www.osapublishing.org/abstract.cfm?uri=OFC-2020-M3Z.10

3.4.2. Demonstration details

The concept of the demonstration is described in Section 2.2. The rover is presented in Figure 8.
FIGURE 8: THE DEMP ROVER USED IN THE DEMONSTRATION AT OFC’20

The 5G access setup is captured in Figure 9.

FIGURE 9: SETUP USED FOR THE DEMONSTRATION
4. References

[5]. 5G PPP technology board workshop 2020, https://5g-ppp.eu/5g-ppp-technology-board-workshop-2020/